Application of the Derivative

Position Function: The function s that gives the position (relative to the origin) of an object as a function of time.
Δt represents a period of time
Δs represents distance change
Note: $\Delta s=s(t+\Delta t)-s(t)$
Rate = \qquad
$\underline{\text { Average Velocity }}=\frac{\text { Change in Distance }}{\text { Change in Time }}=\frac{\Delta s}{\Delta t}$
Using the Derivative: Allows us to find the instantaneous velocity (velocity) at any time t.
If $s=s(t)$ is the position function for an object moving along a straight line, then the velocity of the object at time t is:

$$
v(t)=\lim _{\Delta t \rightarrow 0} \frac{s(t+\Delta t)-s(t)}{\Delta t}=s^{\prime}(t)
$$

Speed of an object is: $|v(t)|=\left|s^{\prime}(t)\right|$

Free-Falling objects under the influence of gravity

$$
\begin{aligned}
& \text { Position: } s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0} \\
& \text { Where } s_{0}=\text { initial height } \\
& \qquad \begin{aligned}
v_{0} & =\text { initial velocity of the object } \\
g & =\text { the acceleration due to gravity }(-32 \mathrm{ft} / \mathrm{sec} \text { or }-9.8 \mathrm{~m} / \mathrm{sec})
\end{aligned}
\end{aligned}
$$

Example: At time $t=0$, a diver jumps from a diving board that is 32 ft . above the water.
The position of the diver is given by $s(t)=-16 t^{2}+16 t+32$ where s is measured in ft. and t is measured in sec.
(a) When does the diver hit the water?
(b) What is the diver's velocity at impact?

